A power inverter, or inverter, is an electrical power converter that changes direct current (DC) to alternating current (AC);[1] the converted AC can be at any required voltage and frequency with the use of appropriate transformers, switching, and control circuits.

Solid-state inverters have no moving parts and are used in a wide range of applications, from small switching power supplies in computers, to large electric utility high-voltage direct current applications that transport bulk power. Inverters are commonly used to supply AC power from DC sources such as solar panels or batteries.

The inverter performs the opposite function of a rectifier. The electrical inverter is a high-power electronic oscillator. It is so named because early mechanical AC to DC converters were made to work in reverse, and thus were “inverted”, to convert DC to AC.

A solar inverter, or PV inverter, converts the variable direct current (DC) output of a photovoltaic (PV) solar panel into a utility frequency alternating current (AC).

There are four kinds of inverters

  1. Stand Alone (Small Portable)
  2. Residential (Wall Mounted)
  3. Commercial (Concrete Pad)
  4. Micro (Under Module)

Inverters can be fed into a commercial electrical grid or used by a local, off-grid electrical network. It is a critical component in a photovoltaic system, allowing the use of ordinary commercial appliances. Solar inverters have special functions adapted for use with photovoltaic arrays, including maximum power point tracking and anti-islanding protection.

Central inverters convert the DC voltage from “strings” of photovoltaic (PV) panels to AC voltage. They are residential, commercial and utility scale systems with power level of 1kW or higher. The maximum power point tracking (MPPT) for the PV panels is performed centrally at the DC-AC inverter stage.

Solar inverters may be classified into three broad types:

Stand-alone inverters, used in isolated systems where the inverter draws its DC energy from batteries charged by photovoltaic arrays. Many stand-alone inverters also incorporate integral battery chargers to replenish the battery from an AC source, when available. Normally these do not interface in any way with the utility grid, and as such, are not required to have anti-islanding protection.

Grid-tie inverters, which match phase with a utility-supplied sine wave. Grid-tie inverters are designed to shut down automatically upon loss of utility supply, for safety reasons. They do not provide backup power during utility outages.

Battery backup inverters, are special inverters which are designed to draw energy from a battery, manage the battery charge via an onboard charger, and export excess energy to the utility grid. These inverters are capable of supplying AC energy to selected loads during a utility outage, and are required to have anti-islanding protection.


Maximum power point tracking

Solar inverters use maximum power point tracking (MPPT) to get the maximum possible power from the PV array. Solar cells have a complex relationship between solar irradiation, temperature and total resistance that produces a non-linear output efficiency known as the I-V curve. It is the purpose of the MPPT system to sample the output of the cells and determine a resistance (load) to obtain maximum power for any given environmental conditions. Essentially, this defines the current that the inverter should draw from the PV in order to get the maximum possible power (since power equals voltage times current).


Anti-islanding protection

In the event of a power failure on the grid, it is generally required that any grid-tie inverters attached to the grid turn off in a short period of time. This prevents the inverters from continuing to feed power into small sections of the grid, known as “islands”. Powered islands present a risk to workers who may expect the area to be unpowered, but equally important is the issue that without a grid signal to synchronize to, the power output of the inverters may drift from the tolerances required by customer equipment connected within the island.

Detecting the presence or lack of a grid source would appear to be simple, and in the case of a single inverter in any given possible physical island (between disconnects on the distribution lines for instance) the chance that an inverter would fail to notice the loss of the grid is effectively zero. However, if there are two inverters in a given island, things become considerably more complex. It is possible that the signal from one can be interpreted as a grid feed from the other, and vice versa, so both units continue operation. As they track each other’s output, the two can drift away from the limits imposed by the grid connections, say in voltage or frequency.